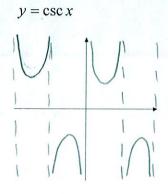
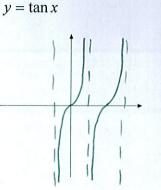
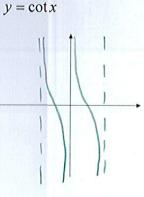
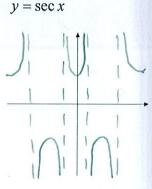
Fill in the blanks regarding the graph on the right. Simplify your answers. NOTE: The
$$x$$
 – coordinates of the two points highlighted are $\frac{\pi}{9}$ and $\frac{5\pi}{9}$.

[a] Middle
$$y$$
 – value = $\frac{2}{9}$ $\frac{1-(-8)}{2}$


[e]


c] Phase shift =
$$\frac{\pi}{9}$$


[d] Period =
$$\frac{9}{9}$$
 $\frac{2}{7}$ $\frac{9}{9}$ \frac


SCORE:

[a] Sketch 2 periods of the graphs of the following functions.

- [b] Fill in the blanks.
 - [1] The equations of the vertical asymptotes of $y = \csc x$ are $\times = \sqrt{1}$.
 - [2] The domain of $y = \tan x$ is $x \neq \frac{1}{2} + n\pi$.
 - [3] As $x \to \frac{\pi}{2}^+$, $\sec x \to \underline{\hspace{1cm}}$.
 - [4] As $x \to \pi^-$, $\cot x \to \underline{\hspace{1cm}}$.

Let
$$y = -2\sin(\frac{\pi}{6}x + \frac{7\pi}{3}) + 5$$
.

SCORE: ____/ 15 PTS

[a] Fill in the blanks. Simplify your answers.

Middle
$$y$$
 – value = 5

Amplitude =

Period =

12 = 27.6

$$Minimum y - value = 3 5-2$$

Phase shift =

-14 8×+ 5=0

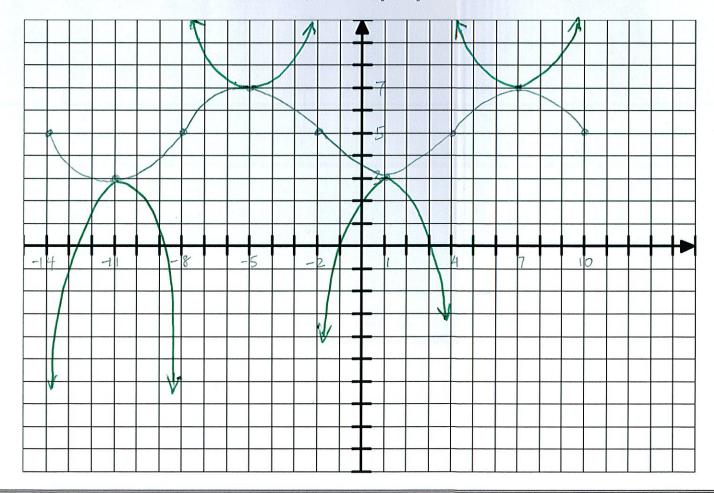
Find the coordinates for all points corresponding to the middle, top and bottom of the graph of the function $\frac{7}{2} \times = -\frac{7}{2}$ for 2 complete explicit static at the 1 middle, top and bottom of the graph of the function [b] for 2 complete cycles, starting at the phase shift.

X=-74. 6

Point 1:
$$(-14 , 5)$$

Point 2:
$$(\begin{array}{c} | 2 \rangle \\ - | 1 \rangle \\ \end{array}$$
, $\begin{array}{c} | 3 \rangle \\ \end{array}$

Point 3:
$$(-8; 5)$$


Point 4:
$$(\underline{-5},\underline{7})$$

Point 5:
$$(-2, 5)$$

[c] On the graph paper below, sketch a detailed graph of 2 complete cycles of the function using the information from [b]. You must label all x – and y – values from [b] on the appropriate axes below, and you must use a consistent scale for each axis. You do NOT need to label each tick mark on each axis, only the ones you found in [b].

4P=3

Also on the graph paper below, sketch the graph of $y = -2\csc(\frac{\pi}{6}x + \frac{7\pi}{3}) + 5$. [d]

